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Abstract 

A Non-Linear Finite Element Model for the Determination of Elastic 
and Thermal Properties of Nanocomposites 

by 

Paul Elsbernd 

This thesis presents a non-linear model for the thermal and elastic properties of single- 
walled carbon nanotube reinforced polymer composites. Finite Element Analysis (FEA), 
in conjunction with the Embedded Fiber Method (EFM), is used to calculate the effective 
stress-strain curve and thermal conductivity of the composite material. First, the 
geometry of a user-defined volume fraction of nanotubes is randomly generated and their 
properties are incorporated into the polymer matrix using the EFM. Non-linear FEA is 
next performed to account for the non-linear properties of the polymer matrix and the 
carbon nanotubes. Finally, Monte Carlo Analysis of five hundred random 
microstructures is performed to capture the stochastic nature of the random fiber 
generation and to derive statistically sound results. The model is validated by 
comparison with several different experiments reported in the open literature. 
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Chapter 1 

Introduction 

1.1 Motivation 

As nanotechnology has blossomed over the last two decades, countless applications for a 

variety of nanoparticles have been demonstrated or proposed. The use of gold 

nanoparticles to destroy tumors [1], of carbon nanotubes to improve bullet proof vests 

[2], and of fullerene nanoparticles to detect biological markers of disease [3] are a few 

examples that encompass only a tiny fraction of the countless possible applications of 

nanoparticles. Arguably, the most commonly proposed application of nanoparticles is 

their use in composite materials. While the choice of particle strongly depends on the 

functionality sought for the composite, one of the most widely studied nanocomposites is 

the carbon nanotube reinforced composite. 

Carbon nanotubes offer exceptional mechanical, thermal, and electrical properties at an 

almost insignificant weight on the macroscale. Theoretically, single-walled carbon 

nanotubes (SWCNTs) exhibit elastic moduli of the order of 1 TPa and fracture strains of 

10-30% [4-8]. Initial experiments did not identify such a specific value for the elastic 

modulus due to undeveloped experimental techniques and carbon nanotubes that were not 

perfectly prepared or treated. Troiani et al. [9] reported an elastic modulus of 

± 156 GPa.  On the other extreme, Treacy et al. [10] report L8±&f TPa.  Recent 



improvements in nanotube fabrication and new experimental techniques have yielded 

elastic properties that are more consistent with theoretical predictions. Wong et al. [11] 

and Yu et al. [8] reported elastic moduli of 1.2S+ StSf TPa and 0.95 TPa, respectively. 

These findings indicate that SWCNT's have elastic moduli that are three times that of 

carbon fibers, and five times that of steel at one sixth the weight [12]. 

In addition to their outstanding mechanical properties, carbon nanotubes exhibit 

exceptional thermal and electrical properties. The theoretical thermal conductivity of 

SWCNTs  is  usually reported  as  6,000    at room temperature   [13],  which  is 

approximately three times the thermal conductivity of diamond, and approximately 10* 

times that of most polymers [14].  This value is in fact highly temperature dependent as 

-•• 

reported by Grujicic et al. [15], ranging from values as high as 12,000 at 100K to 
m—K 

W 
about 2,000   at 300K.    Carbon nanotubes are also found to have exceptional 

electrical conductivity, of the order of l©*«*!©7 —, approximately 20 decades higher than s 

that of most polymers [14,16]. 

These outstanding properties make carbon nanotubes extremely interesting for a variety 

of applications. Individually, applications for CNTs include field emission sources, 

Lithium-ion batteries, capacitors, actuators, molecular sensors, gas and hydrogen sources, 

scanning probe tips, and countless electronics applications [17,18]. However, of more 

interest to this current study are the potential applications for nanotubes in composite 

materials; polymer composites in particular. Their mechanical properties make them 

ideal candidates to use as reinforcing agents, either alone or as filler with other 

reinforcements, such as carbon or glass fibers.    Their thermal properties make them 



desirable for thermal management applications, and their electrical properties make them 

ideal for numerous other composite applications such as electromagnetic shielding, 

preventing electrostatic charging, and damage sensing [19,20]. Collectively, these 

properties make nanotube composites very interesting to many different fields including 

the aerospace, automotive, medical, and defense industrial sectors. 

Because of the significant promise in these new composites, a need to predict their 

physical properties has developed. It is in this context that the motivation for the current 

work is derived. The capacity to accurately predict properties of nanocomposites is 

particularly needed because the sheer number of different possible composites limits 

experimental characterization. Not only are there countless different polymers to be used 

as the matrix material of the composite, but the effect of various volume fractions of 

nanotubes also needs to be studied for each composite. These two factors are the primary 

motivations for an accurate and versatile model of carbon nanotube composites behavior. 

1.2 Obstacles to Accurate Experimentation 

Besides the overwhelming number of possible composites, there are four major issues 

influencing the experimental accumulation of accurate information about nanotube 

composites. They are: inadequate interfacial bonding, poor dispersion, waviness and 

alignment issues, and nanoscale measurement concerns. Interfacial bonding describes the 

ability of the carbon nanotube to chemically bond to the matrix material. This point 

relates to the inherent physical structure of carbon nanotubes. Pristine nanotubes are 

essentially defect-free and atomically smooth.  This fact inhibits interfacial bonding with 



the matrix structures in which CNTs are mixed and thus tremendously inhibits their 

reinforcing capabilities. 

This problem has been approached by several researchers and the most effective solution 

has been functionalization. Surface functionalization is the process by which various 

chemical functional groups are attached to the nanotube sidewalls and/or endcaps using 

either covalent or non-covalent bonding. This process was first proposed for nanotubes 

by Tiano et al. [21]. By specifically choosing functional groups based upon the 

composite matrix material, a dramatic increase in the interfacial bonding in the composite 

can be achieved. Zhu et al. [22] report that by utilizing acid treatment and fluorination of 

the nanotubes, they were able to achieve a 30% increase in the elastic modulus of an 

epoxy composite with the addition of only 1% weight fraction (wt.) of SWCNTs. 

Functionalization is an excellent method because it allows one to modify nanotubes with 

functional groups that offer the best bonding for any specific matrix material, and it only 

has a small effect on the properties of the nanotube itself. Garg and Sinnot [23] report 

that even a high degree of sidewall functionalization will degrade the mechanical strength 

of SWCNTs by only 15%. 

The second obstacle is that of dispersion. Due to the extraordinarily large aspect ratio of 

SWCNTs, up to 1,000, nanotubes tend to agglomerate to form ropes or bundles by means 

of intrinsic Van der Waals attraction [24]. One rope can contain hundreds of nanotubes, 

but the nanotubes can readily slide relative to each other due to the low shear modulus of 

the bundles [25-27]. This fact prevents good dispersion of nanotubes in the matrix and 

not only limits the reinforcing capabilities of the CNTs, but it can actually degrade the 

initial properties of the bulk matrix material alone.  Many methods have been studied to 



address this problem including ultrasonication, high shear mixing, surfactants, 

functionalization, and several others [22]. The most successful method seems to be a 

combination of the above methods with functionalization playing a primary role. 

In addition to dispersion and bonding issues, waviness and alignment are other major 

challenges faced by experimentalists. A large number of studies have been published 

researching methods of better aligning nanotubes in a composite. The methods of 

electrospinning, magnetic field inducing, liquid crystal inducing, shear flow, extrusion or 

ejecting, melt spinning, and mechanical stretching are among many that have been 

explored [17,22]. Furthermore, lone carbon nanotubes, even in composites, are generally 

assumed to be straight and are often modeled as such. In actuality, only quite short 

nanotubes, less than about 100 fftn, are found to be straight or "quasi-straight" in 

composites [20]. In fact, when normal nanotubes are incorporated into composites, the 

bonding with the matrix material in conjunction with curing of the composite, in the case 

of epoxies, causes waviness to be observed. This is due to the low bending rigidity of 

carbon nanotubes, of the order of 1 X ICF25 — [28].   Additionally, it has been shown 

that current nanotube fabrication methods result in nanotubes with a large distribution of 

diameters and lengths [29,30]. This fact will in turn lead to a distribution of waviness 

exhibited in the nanotubes, increasing with nanotube length. Most current models 

assume that the nanotubes in the composite are straight due to the computational and 

theoretical difficulties that arise in accounting for this parameter in their approach. Only 

a few authors, including Shi et al. for mechanical properties [31], Li et al. for electrical 

properties [19], and Zhang et al. for thermal properties [32], have incorporated waviness 

into their models.     Neither of these  authors studied the mechanical properties of 



composites. The model proposed in this paper includes both waviness and alignment in 

its calculation of thermal and mechanical properties of the composite. This is one of the 

primary advantages of the proposed model over other current models. 

The final obstacle relating to the accumulation of knowledge about the effective 

properties for different composites is the scale on which experiments must be conducted. 

Though perhaps less challenging than observing nanotube properties directly, 

nanocomposite experimentation is difficult because it is both costly and time intensive 

due to the equipment and methods that must be used. While nanotubes are costly by 

themselves, the fabrication of the composites is quite difficult and time consuming as 

well. For polymer composites, which are of considerable interest, most researchers first 

functionalize the nanotubes, disperse them in an epoxy matrix material, and then cure the 

resin. Zhu et al. reported this process to take a minimum of 18 hours [22]. Any misstep 

in the process would require starting over. Then, to perform an analysis on the sample, 

ATR-FTIR, SEM/EDAX, optical microscopes, DMA systems, and other systems are 

used [22,33]. Finally, mechanical testing is performed in a variety of ways. The 

complexity, expense, and time required for this testing are some of the primary 

motivations for a general model of nanotube composites to be developed. 

1.3 Current CNT Composite Models 

In pursuing a versatile model, many different models have been developed with a variety 

of unique approaches. Tserpes et al. [34] developed a multi-scaled modeling approach to 



test the tensile behavior of composites in which nanotubes are modeled independently, 

then approximated as a beam element, and integrated into a representative volume 

element (RVE) which can eventually be solved using finite element analysis (FEA). Li 

and Chou [35] presented another multi-scale approach to test compressive behavior. 

Xiao and Gillespie Jr. [36] reported a nanomechanics model for predicting elastic 

properties of SWCNTs as composite reinforcement, and then used a micro-mechanics 

model to calculate the elastic properties of the composite as a whole. Shi et al. [31] used 

a micromechanics model as well, and include waviness and agglomeration in their 

calculation of the elastic properties. Song and Youn [37] calculated the effective thermal 

conductivity of nanotube/polymer composites using the control volume finite element 

method. All of these models use a single carbon nanotube that traverses the entire RVE. 

They assume that the effective properties of the composite as a whole can be calculated 

based on a representative RVE with a single nanotube, primarily due to computational 

simplicity. This assumption is contended in this paper and is not made by the current 

model. 

Beyond the models that calculate effective properties based upon a single nanotube RVE, 

there are several models that do not make this assumption. Xue [38] presented a 

numerical method based on Maxwell theory to calculate the thermal conductivity of 

nanotube/oil and nanotube/decene composites. Bagchi and Nomura [39] approximated 

nanotubes as spheroidal inclusions and used effective medium theory to calculate the 

thermal conductivity of aligned nanotube/polymer composites. One of the most versatile 

models is presented by Zhang and Tanaka [32]. Using the hybrid boundary node method 

in conjunction with the Fast Mulitpole Method, they calculated the thermal properties of 
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CNT composites while including waviness and alignment for a variety of nanotube 

configurations. Odegard et al. [40] modeled the nanotubes as an effective continuum 

fiber using the equivalent-continuum modeling method along with a micromechanics 

approach to calculate mechanical properties of CNT/polymer composites. Seidel and 

Lagoudas [41] modeled nanotubes using a composite cylinders approach and used the 

Mori-Tanaka methods to obtain the effective elastic properties for the composite as a 

whole. They considered both aligned and randomly oriented nanotubes and also consider 

nanotube bundling. Finally, Li and Chou presented a model for damage sensing by 

calculating electrical properties of CNT/glass-fiber composites using the finite element 

method. 

Each of the methods detailed above provide important and unique contributions to the 

modeling of CNT-reinforced composites, but there is one major aspect that nearly every 

model excludes; non-linearity. Tserpes et al. [34] are the only known authors who 

reported a stress-strain curve for their composite calculations, but they considered only a 

single-nanotube that is perfectly aligned and traverses the entire RVE. Without the 

consideration of the non-linear elastic properties of the polymer matrix and/or those of 

the carbon nanotubes themselves, a stress-strain relationship cannot be obtained for the 

composite. The stress-strain curve is one of the most important properties needed to 

characterize a composite and is thus the primary motivation and result of the model 

detailed in this thesis. 

The model proposed herein reliably simulates CNT-reinforced composite properties and 

provides qualitative deformation information regarding the composite structure as a 

whole.    Esteva [42] reported a finite element model in which nanotube-composite 
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structures are modeled using finite elements and the Embedded Fiber Method, originally 

developed to model steel bar reinforcements in concrete [43-45]. This useful approach 

allows a simple square mesh of the entire RVE to be generated, circumventing a 

complicated meshing process while still producing accurate results. In ordinary FEM 

routines, human intervention must take place to locate fiber-mesh interfaces and to 

increase the mesh refinement in these areas. The simple square mesh used by the EFM 

allows for an RVE with a realistic volume fraction of nanotubes and the addition of non- 

linearity to be modeled with a reasonable amount of computational effort. This model 

includes the consideration of nanotube waviness and alignment as well. This concept, 

when applied to nanotube-composites, is novel and effective. Esteva was able to 

calculate the effective modulus of elasticity and thermal conductivity of a 

nanotube/polymer composite, but his model did not include a non-linear stress-strain 

relationship or a non-linear thermal conductivity. The proposed model builds upon the 

work of Esteva, but it also incorporates the non-linear elastic properties of polymer 

composites using an incremental approach, and studies the non-linear thermal properties 

of SWCNTs using both incremental and iterative approaches. The non-linear elastic 

approach allows the calculation of stress-strain relationships along with descriptive 

deformation behavior before and after the onset of plastic deformation of the composite. 

The non-linear thermal approach allows for the effect of non-linear thermal conductivity 

to be examined and its relevance in modeling to be discussed. In addition to the non- 

linear issues, the model herein proposes the introduction of several realistic parameters, 

including length and diameter distributions of SWCNTs as well as a more accurate model 

of nanotube waviness.   Each of these aspects is considered to make the model versatile 
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with the ultimate goal of producing a model that closely agrees with experimental results. 

In the numerical results section of this thesis, a comparison to the experimental results of 

Sun et al. [46] and Zhu et al. [17,22] is presented for the stress-strain relationships 

calculated by the proposed model. The effective thermal conductivities calculated by the 

model      are      also      compared      to      six      different      experiments      [16,47-51]. 
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Chapter 2 

The Representative Volume Element 

The herein proposed approach is based on a two-dimensional finite element model of the 

composite structure. The properties of the composite structure as a whole are represented 

by a representative volume element (RVE) of dimension 1 ptm x 1 ßm x 5 wm. The small 

thickness approximates a two dimensional structure which is adopted for simplicity. 

There are three distinct steps in the proposed model; geometry generation, fiber 

portioning, and finite element analysis. First, to generate the nanotube geometry of the 

RVE, the positions and orientations of nanotubes in the RVE, up to the desired volume 

fraction, are randomly generated. Second, the RVE is divided into a square mesh of 

elements and the fibers are partitioned, or divided, according to which element they fall 

in. The refinement of this square mesh necessary for accurate results is one of the objects 

of study in this report. Finally, the mechanical or thermal properties of the nanotubes in 

each element are integrated into the composite matrix properties, based upon which kind 

of study is being performed, and non-linear finite element analysis is utilized to find 

either the stress-strain relationship and deformation behavior, or the thermal conductivity 

of the embedded fiber composite. 
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2.1 Geometry Generation 

The first step in accurately modeling any composite material is to realistically model the 

geometry of the reinforcing agents. Due to the many advances that have been made in 

dispersing nanotubes and breaking up ropes and agglomerates [52,53], as well as the 

effects that these factors have on effective composite properties [54], a geometry of lone 

nanotubes is assumed. To generate an accurate geometry within the RVE, the parameters 

of nanotube length, diameter, and waviness are integrated into the model. 

In any individual batch of carbon nanotubes, varying according to method of fabrication, 

lengths of individual nanotubes vary anywhere from less than 100 wm to over 1 jtftn. 

Both Wang et al. [29] and Ziegler et al. [30] reported statistically accurate length 

measurements of a large number of nanotubes. Wang et al. reported a Weibull 

distribution of lengths with scale and shape parameters of a = SM 10-s and & = £4, 

respectively [29]. The probability and cumulative density functions (PDF and CDF) for a 

Weibull distribution are given by, respectively, by the equations 

f(x) = ^)V£l?andF(;t) = l-e~&. (1) 

Isolating x in the CDF gives the equation 

a. 

x = -a[ln(l-u)]r, (2) 
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where x is a random number from a Weibull distribution and u is a random number from 

a uniform distribution.  This method is known as the inverse transformation method and 

is simple and useful for generating random numbers from arbitrary distributions. In this 

notation, & and J are related to the scale and shape parameters reported by Wang et al. in 

the following manner: 

m = ff  is s y = tt_ (3) 

Using the above information, along with minimum and maximum nanotube lengths of 20 

ram and 800 M», respectively, the length of each nanotube in the proposed model is 

randomly generated from a Weibull distribution using the inverse transformation method. 

A histogram of 1,000 random lengths generated using these Weibull parameters is shown 

in Figure 1 to demonstrate the effectiveness of this technique. 
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Figure 1. A histogram of 1,000 Weibull randomly generated nanotube lengths. 
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Other authors have reported a distribution of nanotube diameters in addition to nanotube 

lengths. Theoretical diameters of carbon nanotubes range from about 0.5 »R- to 7.5 mm 

as reported by Pipes et al. [55]. Experimentally fabricated nanotube diameters of more 

than 5 fa» have been reported, but an average diameter between one and two nanometers 

is reported by several authors in any given batch of nanotubes, for a variety of fabrication 

methods [56,57]. In addition to length distribution, Ziegler et al. [30] also reported a 

distribution of individual nanotube diameters which ranges from approximately 0.5 JJJR 

to 2 »as. The general PDF and CDF for a lognormal distribution are given, respectively, 

by the equations 

Solving the CDF for x yields the equation 

where x is a random number from a lognormal distribution and u is a random number 

from a uniform distribution.. 

Ziegler et al. did not report the G and \i parameters for their lognormal calculation, but 

they did report a histogram of their diameter distribution data. Using Matlab's "dfittool" 

capability, a distribution fit is performed on their histogram to calculate these parameters. 

This fit is shown in Figure 2. 
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Figure 2. Lognormal distribution fit to the diameter data reported by Ziegler et al. [29]. 

The parameters of \x and G are found to be, respectively, 0.02847 and 0.33637. Using 

these parameters, a random diameter for each nanotube was generated, with a lower limit 

of 0.5 wm., as supported by Ziegler et al. and by theoretical computations. It is important 

to note, however, that this diameter is not the effective diameter that is incorporated into 

the calculation of the volume that each nanotube occupies. When dealing with 

nanocomposites, the actual distance of atomic bonds must be considered because it is of 

significant size compared to the diameter of the particles. In this particular case, the 

carbon-carbon bond spacing between the nanotubes and the polymer matrix must be 

considered in the calculation of the effective volume occupied by the nanotubes. A 

carbon-carbon bond is approximately 0.34 mr& in length, thereby increasing the effective 

diameter of each nanotube by 0.68 wm. A diagram of this effect is shown in Figure 3. 
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N- - 

Figure 3. The effective diameter of SWCNT as reinforcement is increased due to the carbon-carbon 
bonding between the nanotube and the matrix. The actual nanotube diameter is depicted as R_n and 
the effective diameter including the carbon-carbon spacing is shown 

This effect is incorporated into the random diameter generation but is ignored in the 

random length generation. This is done because the 0.68 ran length scale is significant 

when compared to the average diameter of approximately 1 rtrn but not significant when 

compared to the average length of approximately 200 wm. A histogram of 2,000 random 

effective diameters is shown in Figure 4 to demonstrate this distribution. 
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Lognormal Distribution of Effective Nanotube Diameters Including Carbon-Carbon Spacing 
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Figure 4. A histogram of the lognormal random effective diameters generated using the parameters 
from Ziegler's paper [29] are presented, including carbon-carbon spacing. 

The final parameter that is incorporated into the geometry generation of the nanotubes is 

waviness. As mentioned in the introduction, waviness can be considered a function of 

length. To incorporate this into the model, each nanotube was divided into ten segments, 

which are computationally treated as individual fibers. Each segment is straight and there 

is an angle of deviation between each segment. This angle is random, varying uniformly 

between ^^ and -J^a£ , where ©m^ is some upper limit.   The upper limit of the 

angle is determined by the nanotube length. Due to insufficient experimental data on the 

subject, a linear model of waviness is assumed and thus the function for the maximum 

angle of deviation between any two segments for a particular nanotube is given as 

180 = 

upper length limit 
X actual nanotube length. (6) 
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With these concepts in place, the geometry generation routine is implemented with 

relative ease. The positions of each nanotube are generated randomly throughout the 

RVE and any time a nanotube segment ends outside of the RVE, that nanotube is ended 

and a new nanotube is begun. With the diameter and length of each nanotube stored, the 

volume of each nanotube is easily calculated. The generation process continues until the 

desired volume fraction is reached. Any individual complete geometry generation is 

referred to as a microstructure. A single RVE microstructure with 0.0089% volume 

fraction (1% wt.) of nanotubes in place is illustrated in Figure 5. 

(a) 
- 

- (b) 

Figure 5. (a) A single, full RVE with 0.0889% v.f. nanotubes is depicted, (b) A close-up view of one 
section of the RVE is shown. The waviness of the nanotubes is easily observed. Longer nanotubes 
are wavier than shorter nanotubes to simulate the physical phenomenon. 

It should also be noted that most authors report the weight fraction of nanotubes rather 

than the volume fraction. The conversion between the two quantities is not difficult as 

long as the densities of the nanotubes and matrix material are known. These are input 

parameters that are easily changed in the model depending on what type of nanotubes and 
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what composite matrix material are desired.   The conversion from weight fraction to 

volume fraction is given by the equation [55] 

f      __  ^/ntP ma friar  

(V) 

where wjj^. is the weight fraction of nanotubes, jE^sr«» is the density of the polymer 

matrix, and p^ is the density of the nanotubes. 

2.2 Fiber Partitioning 

After generating the nanotube geometry for any single microstructure, it becomes 

necessary to partition each nanotube because of the nature of the fiber embedment. 

Partitioning is a process in which reinforcing fibers that cross the boundaries of one 

element into another element are divided at that boundary. In finite element analysis, the 

RVE is divided into many elements. These elements allow for the calculation of 

mechanical displacements, temperature values, or any other number of quantities, 

depending on the fundamental equation you are seeking to solve, to be found at finite 

points throughout the RVE. The accuracy of FEA increases with the number of elements, 

but each element adds additional degrees of freedom to the system that must be solved, 

thereby increasing the computational time required to solve the problem. After the initial 

geometry generation, each nanotube is divided into ten segments to incorporate waviness, 

as described above. A visualization of this initial division is shown in Figure 6. 
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x 10 Nanotube Geometry Before Partitioning 

Figure 6. The nanotube geometry of a small section of an RVE before fiber partitioning is presented. 
The nanotubes are divided into ten segments each, with an "x" marking the end of each segment. 

However, to perform FEA, only the properties of the matrix and the reinforcing fibers 

that lie in each particular element are of use. Thus a fiber that begins in one element and 

ends in a neighboring element would need to be partitioned at the point it crosses the 

element boundary into two, separate, shorter fibers. If the entire fiber is included in every 

element in which it passes, the reinforcing properties of that fiber would be grossly 

overestimated. It can be imagined then that one fiber can potentially cross several 

element boundaries, thus being divided several times, especially as the number of 

divisions within the RVE increases. Though this is not physically precise, this method 

has been shown to be computationally accurate and must be used for the Embedded Fiber 

Method (EFM), which will be discussed in the following section.    The partitioning 
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algorithm used in the current model is taken from the work of Esteva [42] and based upon 

the work of Ranjbaran [44,45]. It is important to note that although the fibers are divided 

into essentially smaller fibers by partitioning, none of the waviness and length 

distribution information is lost because this is all taken to account in the geometry 

generation process. A sample microstructure is presented in Figure 7 to illustrate the 

concept of fiber partitioning. 

Figure 7. (a) A visualization of the same microstructure as Fig. 5 with "x's" marking the division of 
individual nanotubes into segments, (b) A magnified view of one region of the RVE. The circles 
represent segments that were partitioned because they crossed element boundaries. 

After generating the geometry and partitioning the nanotubes for an RVE, the final step 

before solving the system using the Finite Element Method is to incorporate the 

reinforcing properties of the nanotubes into those of the bulk matrix material. This is 

accomplished using the Embedded Fiber Method. 
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2.3 The Embedded Fiber Method 

As mentioned in the introduction, the Embedded Fiber Method (EFM) was originally 

developed for the Finite Element Analysis of steel-rod reinforced concrete by Ranjbaran 

[44,45]. The fundamental principle behind this method is the assumption of perfect 

bonding between the bulk matrix material and the reinforcing structures, thus allowing 

the direct addition of the stiffness characteristics, or any other property, to those of the 

matrix material. With the recent advancements in nanotube functionalization and 

interfacial bonding mentioned in the introduction, this assumption is justified for the case 

of functionalized CNT composites. To illustrate the general process, a brief description 

of the process for the elastic case is presented. 

The stiffness characteristics of the fibers and matrix alone are calculated using the 

traditional finite element formulation. The stiffness matrix for an isotropic material 

element is given by the equation 

ML, = hJAt[B]'[D][B]T'da   = Jjni[B]e[D][B]Te\j\dSdt, (8) 

where the strain matrix B, the material matrix D, and the Jacobian matrix J are given, 

respectively, by 

*dx 
dv i 

Idy 
dU/dy ~ dVUX. 

B£= "7dv = (9) 
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d\\      0 dXj      0 dX±     0     dN±     0 
dx dXi dx dX^ dx    dX±    dx    dN^ 
0 dy 0 dy 0      dy       0       dv 

d\\ dNj dN2 dN2 
dff3   d\3   dX'i   dXj 

dy dx d>' dx dy     dx     dy     dx J 

D = 
1-v* 

1      If 

If      1 

0     0 

0 
0 

2    J 

(10) 

/ = 

dx/        dyi 
fdr 'dr 

dx 
/ ds ' t ds 

(11) 

Equations (9), (10), and (11) represent the matrices for the two-dimensional plane stress 

FEA problem, which is what the current model is solving. In Equation (10), E is the 

modulus of elasticity of the matrix material and v is Poisson's ratio. For a four-noded 

quadrilateral element with two degrees of freedom per node, there are four shape 

functions used to map between the local parametric coordinates r and s and the global 

coordinates x and y. These shape functions are seen in Equation (9) and are given by 

IMHK^AIT, (i2) 

W1 = J(l-r)(l-s), (13) 

ff2 = *(l+r)(l-s), (14) 

W3=^(l+r)(l+s), (15) 

/V4 = j(l-r)(l-S), (16) 

These shape functions allow the mapping of local coordinates to global coordinates using 

the equations 

xfos) = [N] [u] and yfas} = [N}[w} , (17) 
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where u and v are the x and y coordinates of the element nodes, respectively. In other 

words, by using the shape functions in Equations (13) through (16) , the x and y positions 

corresponding to any parametric point (r,s) can be found easily using Equation (17). 

Furthermore, the local derivatives are mapped to global derivatives using the Jacobian 

from Equation (11) and the derivates of the shape functions. This mapping is given by 

the equation 

'*7*1 
dN 

ldy\ 

- rn-i = [/] 
dN/dr] 
dN/ 

I    tdsi 
(18) 

With these derivatives and coordinates in hand, the strain matrix and stiffness matrix for 

an element are easily calculated. Due to the discrete nature of FEA, the integral of 

Equation (8) is determined numerically using Gaussian quadrature. For any particular 

element, the shape functions and the Jacobian are evaluated at each of the Gaussian 

quadrature points within the element and summed. For a two-dimensional square 

element, as is the case in the present model, these points are given as 

-/V3 
(19) 

The stiffness matrix can now be written as 

n       n 

M-r = h^L^^8^^0^^'^^'^ (20) 

These finite element formulations can be found in any standard Finite Element Method 

book, such as those by Akin [58], Desai and Abel [59], and Zienkiewicz et al. [60]. 

With the ability to calculate the stiffness matrix for the bulk matrix material, it is now 

necessary to calculate the stiffness matrices for the reinforcing fibers.   In the current 

model, the nanotubes are approximated as line elements.  This approximation is accurate 
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and economical as shown by Konrad and Graovac [43]. With this approximation, the 

stiffness matrix of a one-dimensional fiber, expanded using zeros to two dimensions, is 

given as 

EA 
Kf*L ~ ~L 

1 0- -1 0 
0 0 0 0 
-1 0 1 0 
.0 0 0  0. 

(21) 

This general stiffness calculation is for a fiber that is oriented in the local, positive x- 

direction. In Equation (21), A is the cross-sectional area of the fiber and L is the fiber 

length. To transform this matrix from its local system to the global coordinate system, 

accounting for the true alignment of the nanotube, a matrix of direction cosines is easily 

employed using the equation 

FiÄß = [C][Ä^J[C]rwith 

(22) 
[C] = 

cost   sint      0 0 
—sint cost      0 0 

0        0      cost sint 
0         0     —sint cost 

In Equation (22), t is the angle between the fiber and the positive x-axis of the global 

coordinate system. 

The next step to prepare the fiber's stiffness matrix to be embedded with the bulk 

material's stiffness matrix for a single element is to map the physical coordinates of the 

fiber endpoints to the corresponding parametric coordinates. The parametric coordinates 

of the fiber endpoints are found using a Newton-Rhapson scheme which is shown in 

Appendix A. 

Finally, the full, global stiffness matrix for a single fiber in a single element can be found 

by interpolating the fiber's properties that are given in Equation (22) to the nodes of the 
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element under consideration. This is accomplished by utilizing the transformation matrix 

Twith the equation 

Kf:b = [T][Kf:br][T]T , where 

(23) 
[T] = 

0 •"•':•:v:-:.' 0 •'•<':'•":•-7:'        0 •'••';' 'V-7:1 0 •'•V":'7:1 

0        fl'jCf-j.Sj)        c        ft^r^^)        0 '•: *:-7: '        0 'V*:-7:1 

In Equation (23), r and 5 represent the local parametric coordinates of the fiber endpoints. 

Having introduced this final transformation, the fiber's properties can now be 

incorporated into those of the bulk matrix material using simple addition: 

M«ni.dd.d = M•. + M/a. (24) 

It is important to note here that while the above steps are described for the case an elastic 

problem, this method is truly versatile and may be used with minimal change for thermal, 

electrical, or various other problems. 

The Embedded Fiber Method is a bit daunting at first glance. Not only are there 

numerous equations to take into consideration, but this process must be accomplished for 

every fiber in an element as well as for every element in the RVE. However, the benefits 

achieved by accomplishing this extra work are indeed significant. The primary 

advantage is that the EFM allows the use of constant quadrilateral elements. Most 

models that use FEA must utilize intense mesh refinement along the nanotube/matrix 

boundaries in order to accurately capture the load transfer properties of the interface. For 

example, a picture of the finite element mesh used by Li and Chou [19] in their model is 

shown in Figure 8. 
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Figure 8. The finite element mesh of the carbon nanotube/fiber cross-ply composite used by 
Li and Chou [19]. The intense mesh refinement along the nanotube matrix boundaries is to 
be noted. 

By utilizing a constant quadrilateral mesh, accurate results can be found without the 

costly human intervention of most other models. For example, the model of Li and Chou 

shown above uses approximately 357,000 elements and 360,000 nodes to achieve their 

results [19]. The fiber-matrix interfaces must be identified and the mesh must be refined 

in those areas. When compared to the 3,600 elements and 3,721 nodes needed for 

accurate results in the current model, the advantages of the Embedded Fiber Method 

become quite clear. For the thermal model with one degree of freedom per node, there 

are approximately lOOx fewer equations to solve in the proposed model. There are about 



28 

200x fewer equations to solve for the elastic problem. No attempt to quantify the time 

saved by eliminating the human intervention process is made herein. However, the 

complete automation of the process by using the EFM is undoubtedly useful. 

Without the Embedded Fiber Method, it is extremely difficult to accurately model any 

significant volume fraction of nanotubes because the computational time is simply too 

great. When considering non-linear properties, the number of equations to be solved is 

multiplied by the number of iterations or incremental steps employed. The Embedded 

Fiber Method is the only practical solution to evaluate the non-linear properties of a 

CNT-reinforced composite on a scale larger than only a few nanotubes and is thus 

utilized by the model proposed in this paper. 
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Chapter 3 

The Non-Linear Finite Element Model 

Having established the Embedded Fiber Method as the procedure for incorporating the 

physical properties of the nanotubes into the bulk composite material properties, the 

proposed method can now be detailed. Esteva [42] developed this model using the 

Embedded Fiber Method with the goal to determine the effective elastic and thermal 

properties of the composite. Using a linear model, the RVE was displaced to 5% strain 

and the reactions at the fixed bottom nodes were used to calculate the effective modulus 

of elasticity. Similarly, a temperature gradient was applied between the upper and lower 

boundaries and heat flux at the lower nodes was used to calculate the effective thermal 

conductivity. While this model made a significant advancement in the area of composite 

modeling, one of the primary tools used by researchers to describe a new or existing 

material is its stress-strain curve. By adopting a linear solution, it is not possible to 

accurately capture the non-linear properties of the polymer matrix or those of the 

nanotubes themselves. The proposed model explores both of these non-linearities and 

how they affect the thermal and elastic properties of the composite as a whole. First, the 

relevant non-linearities are identified. After identifying which non-linearities to consider, 

the various non-linear solution techniques are discussed and how they are applied to the 
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proposed model. Finally, the specific details of the model are discussed along with the 

parameters chosen for experimental comparison. 

3.1 Non-Linearity of Carbon Nanotubes and Epoxies 

The non-linear elastic and thermal properties of carbon nanotubes are well documented in 

the literature, both theoretically and experimentally. For the non-linear elastic properties, 

Tserpes et al. [34] presented a detailed finite element model of lone nanotubes using a 

structural mechanics approach. They identify the stress-strain relationship for armchair 

and zigzag SWCNTs. Additionally, Tserpes et al. [6] presented a progressive fracture 

model to calculate the stress-strain relationship for SWCNT's with perfect structures and 

for those with imperfections. Belytschko et al. [7] developed a molecular mechanics 

model to simulate nanotube fracture. They reported the stress-strain curve for perfect and 

imperfect zigzag nanotubes as well as a curve for various different perfect nanotube 

structures. Natsuki et al. [4] described a structural mechanics approach to modeling 

nanotube elastic properties. Finally, Meo and Rossi [5] presented a molecular-mechanics 

based FEM for the prediction of SWCNT elastic properties. Each of these models takes a 

slightly different approach, but they all identify ~ 10-15% strain as the region where 

significant non-linear behavior is first exhibited by SWCNTs. 

The non-linear thermal properties of SWCNTs have also been modeled, though less 

frequently than the elastic properties. Grujicic et al. [15] presented a molecular dynamics 

based model of the thermal conductivity of SWCNTs in which they investigate the non- 

linear dependence of thermal conductivity on temperature.  The strong dependence they 
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report is depicted in Figure 9 and is the motivation for the non-linear thermal analysis 

performed in this paper. 
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Figure 9. The non-linear thermal properties of SWCNTs are shown in the analysis of Grujicic et al. 
[15]. 

Kawamura et al. [61] also reported the temperature dependence of SWCNT thermal 

conductivity using a molecular dynamics simulation. Additionally, Xu et al. [47] 

reported this effect indirectly by reporting the temperature dependence of the thermal 

conductivity of composites reinforced with SWCNTs. 

Along with the theoretical modeling evidence presented above, experimental evidence 

corroborates the non-linear thermal and elastic properties of SWCNTS. Yu et al. [8,27] 

performed tensile load testing using an AFM tip to document the non-linear stress-strain 

relationship of SWCNTs. Their results show the onset of non-linear behavior to occur at 

greater than 10% strain.   Walters et al. [26] also reported the lower bound of the yield 
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strain of SWCNT ropes to be about 6%.    For thermal properties, Shaikh et al. [62] 

reported a range of thermal conductivities for CNT ropes to range from 0.1-2,000 —-. 

Epoxy composites exhibit non-linear elastic properties at a much lower strain level. Zhu 

et al. [17,22] present stress-strain curves for neat epoxy in which non-linearity is shown 

at 3% strain. Li et al. [63] present similar effects with a load-displacement curve of neat 

epoxy. Sun et al. [46] and Gojny et al. [54] also indicate 3% strain as the onset of non- 

linearity in neat epoxy. Each author indicates epoxy failure at less than 6% without 

reinforcement. The significantly lower onset of non-linear behavior and failure in the 

epoxy than in the lone nanotubes led to the conclusion that the non-linear behavior of the 

nanotubes may be ignored and that of the epoxy must be taken into account for an 

accurate elastic model. 

In general, polymers are reported to have constant values of thermal conductivity. Xu et 

HP 
al. [47] reported a constant thermal conductivity of - 0.2 —•—for their PVDF polymer. 

JiJT-—A 

Wang et al. [48] reported a constant thermal conductivity of - 0.18   for the neat 

epoxy resin used in their experiments. Moisala et al. [16] reported a constant 

-0.255 —^- for epoxy consisting of a bisphenol-A resin and an aromatic amine hardener. 

Du et al. [14] also reported a constant thermal conductivity of-.18 for their PMMA 

polymer. Finally, Cai and Song [49] used a semi-crystalline PU dispersion with a 

constant thermal conductivity of- 0.15 .  Because of the lack of any indication of a 

non-linear temperature dependence of the thermal conductivity of the neat epoxy, only 

the non-linear thermal conductivity of the nanotubes should be considered for a thermal 

model of CNT-reinforced polymer composites. 
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Based upon this review of the non-linear thermal and elastic properties of both carbon 

nanotubes and polymer matrix materials, it is concluded that the non-linear elastic 

properties of the epoxy matrix will be included in the elastic analysis of the model 

presented in this paper and the non-linear thermal properties of the CNTS will be 

included for the thermal analysis. With these choices made, the next step is to select the 

non-linear approach to take in each case. 

3.2 Non-Linear FEA Solution Techniques 

In general, there are two main sources of non-linearity in finite element analysis, as 

described in references such as Desai and Abel [59]. The first type is called material or 

physical non-linearity. This type of non-linearity stems from constitutive laws and is 

inherent in the physical properties of the material. The second kind of non-linearity 

relates to geometrical considerations. When materials undergo large deformations, the 

geometry of the material may change drastically and this can alter the equations used to 

govern the finite element analysis ofthat body [59]. In both the thermal and elastic cases 

considered in the present model, material non-linearity is the only aspect considered. 

For material non-linearity, Desai and Abel [59] outline three kinds of non-linear solution 

techniques commonly used for finite element analysis: the incremental approach, the 

iterative approach, and a mixed approach. In the incremental, or step-wise, approach, the 

load applied to the system is subdivided into many small increments. In general, these 

increments do not need to be of the same size.    With the application of each load 
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increment, all the constitutive laws pertaining to the system are assumed to be linear. 

The results obtained after each step are then used to update the values of the constants 

used in the previous linear increment based upon a known relationship. For a non- 

homogeneous material, the constants may vary throughout the body. When applying the 

iterative approach, the structure is fully loaded during each iteration. After solving the 

fully loaded system, the constants are then updated based upon the results. In general, 

equilibrium is not satisfied after each iteration. The non-balanced load is then used to 

correct the solution until equilibrium is achieved or is sufficiently close based upon 

predetermined criteria. Finally, a mixed approach is combination of the iterative and 

incremental approaches. Generally, incremental loads are applied and a number of 

iterations are applied to each load step [59]. 

After careful consideration of the above methods, the incremental technique was chosen 

for the elastic analysis to be performed and both techniques were studied for the thermal 

analysis. The incremental technique was chosen both for its versatility and because it 

most closely resembles the physical phenomenon of a tensile strain test. The iterative 

technique is not applicable in the elastic analysis of the current model because it does not 

provide any information about the stresses and strains at intermediate load increments. 

Thus, a stress-strain relationship cannot be obtained from an iterative approach in the 

elastic case. In addition, the availability of experimental data for comparison contributed 

to this choice. 

For the thermal analysis, both an incremental approach and an iterative approach were 

taken for comparison. An iterative approach is more readily implemented than an 

incremental approach and converges more rapidly than the incremental approach.   For 
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this reason, it was utilized to calculate an effective thermal conductivity for the 

composite. However, there is no guarantee that an iterative technique will converge and 

it provides no conductivity information at intermediate temperature increments, so an 

incremental approach was also used. 

Upon deciding upon the approaches to select for the thermal and elasticity analyses, a 

non-linear finite element model was developed, using the Embedded Fiber Method as a 

foundation. After generating the nanotube geometry, partitioning the fibers, and 

embedding the fibers, the stiffness matrix of the entire RVE is assembled using the 

standard finite element procedures outlined in Chapter 2. The standard force balance 

equation for FEA is given by the equation 

[Cp = F, (25) 

where {K]\ is the system stiffness matrix assembled from the element stiffness matrices 

defined in Equation (24), as is the displacement or temperature vector for all of the mesh 

nodes in the RVE, and F is the reaction force or temperature gradient vector at the nodes. 

For the elasticity analysis case, the general finite element problem can be solved in one of 

two standard ways. The first approach is to prescribe a force to be applied to the 

structure and then to calculate the resulting displacements at all the nodes. The second 

approach is to prescribe displacements to specific nodes and then calculate the resulting 

displacements of all the other nodes. In each method, the final displacements can be used 

to recover the reaction forces at each of the fixed nodes. The current model uses the 

displacement-controlled approach because the uniform displacement of an entire edge is 

needed to generate a stress-strain curve for the RVE as a whole. 
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To implement the incremental solution technique, displacement increments were applied 

to the elasticity, problem and temperature increments were applied to the thermal 

problem. The number of increments necessary for an accurate solution is one of the 

results of the present report. After each increment is applied, the resulting displacements 

or temperatures of every node in the mesh are calculated. 

For the elasticity case, there are two degrees of freedom per node; x and y displacements. 

With the displacements at each node in hand after an incremental displacement is applied, 

the strain at each node can be calculated and interpolated to the Gaussian quadrature 

points using the strain matrix B from Equation (9), and the equation 

£=[B]m. (26) 

In two-dimensions, the strain vector £ is a three component vector including the strain in 

the x and y directions, s^ ana sy, as well as the shear stain, j^,. With the strain, the stress 

vector at each Gauss point can be calculated using the relation 

w = [0]|i. (27) 

Similar to the strain vector, the stress vector o in two-dimensions is a three component 

vector including the strain in the x andy directions, «^ amd«?^, as well as the shear stress, 

r. 'XV- Recalling the earlier description of the basic finite element method, [D]\ is the 

material matrix given in Equation (10). It is worth pausing here to describe the modulus 

of elasticity E that appears in the material matrix and how it is calculated in the current 

model. In any linear model, the modulus of elasticity of a solid material is assumed to be 

constant. For a perfectly elastic material, this modulus can be calculated as the slope of 

the stress-strain curve for that material. Though no material is perfectly elastic, this 

assumption is valid for most "nearly" elastic materials.   For materials that exhibit non- 
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linearity, the slope of the stress-strain curve changes as stress levels change. For 

materials that exhibit plasticity, the curve decreases at the onset of plastic deformation. 

For work-hardening materials, the slope of the curve may even increase at higher stress 

or strain levels. The slope of the curve at any given strain level is known as the tangent 

modulus. In this report, the tangent modulus of a polymer material is a function of strain, 

not assumed to be constant, and will simply be referred to as the modulus or elastic 

modulus of the material. 

In general plasticity theory, there are two competing ways to categorize whether a 

material has begun to undergo plastic deformation. The Tresca and von Mises criteria are 

two different methods which take into account the full stress state at one specific point of 

a material to come up with a single value which describes the effective stress at that 

point. The von Mises criterion is the more conservative of the two and is thus employed 

in the current model. The von Mises equivalent stress in two dimensions is given by the 

equation [59,64] 

"VMS  = jV2[(^-^-)2-V:+<V + 6V:]  • (28) 

After finding the strain vector at a node using Equation (26) and using it to find its 

corresponding stress vector by Equation (27), the von Mises stress at each Gauss point in 

each element can be calculated using Equation (28). The von Mises stress is then used to 

refer to the stress-strain curve of the neat epoxy to calculate the tangent modulus at any 

particular Gauss point. In this manner, the modulus at each Gauss point throughout the 

RVE can be updated after each displacement increment. This procedure allows the non- 

linearity of the material to be effectively incorporated into the model. A synopsis of the 

incremental procedure is presented in Figure 10. 



38 

Start 

V — 
Calculate Stiff Matrices in Each Element Due to Nanotubes 

V — 
Initialize Sress, Strain, and Elastic Modulus 

Loop over Incremental Steps 

Loop over elements 

 \?  
Update Elastic Modulus Using Material Stress-Strain Curve at Each Gauss Point 

 V 
Calculate Stiffness Matrix for Element 

Update Stresses at each Gauss Point using Interpolated Displacements 

 *> 
Add Nanotube Stiffness Matrix to Material Stiffness Matrix for That Element 

 \> 
Assemble System Stiffness Matrix 

^   
Apply Boundary Conditions 

Solve Systemfor Nodal Displacements 

End: Post Processing 

Figure 10. A block diagram of the non-linear incremental scheme for the elastic case is presented. 
Notice the two major loops which are the driving force behind the computational time required by 
the model. 

For the thermal problem, the incremental approach follows essentially the same approach 

as the elastic problem, with only a few differences. The first difference between the 

thermal and elastic problem is that the thermal case requires only one degree of freedom 

per node, temperature. This in turn greatly reduces the computational cost to solve the 

problem because the number of equations to solve is halved. The second difference is 

that instead of updating the elastic modulus of the material, the thermal conductivity of 
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the nanotubes is updated after each incremental temperature increase. This process is 

simply performed with the knowledge of the temperature at each of the nodes throughout 

the RVE. Using the shape functions given in Equations (13) through (16), the 

temperature is interpolated from the nodal temperatures to define a temperature at each of 

the nanotube endpoints. Because the nanotube thermal conductivity is quite high, 

approximately four orders of magnitude greater than that of the polymer matrix, an 

average of the two nanotube endpoint temperature is assumed as the constant temperature 

along that nanotube. The thermal conductivity ofthat particular nanotube is then updated 

based upon the curve of Grujicic et al. [15] shown in Figure 9. The thermal conductivity 

is updated using the equation 

K^ =3E^aT5 + 7B~9T*— 0.001 IT3 + 0.15637: - 26.5037'+ 2471.7, (29) 

where J^ is the thermal conductivity of the nanotube and T is the temperature of the 

nanotube in degrees Celsius. This process is repeated for every nanotube in each element 

and is repeated after each incremental temperature step. 

In addition to the incremental approach, the iterative technique is also applied to the 

thermal problem. In this process, the finite element solution is solved in one total 

temperature increase. Using the temperature data recovered from this solution, the 

thermal conductivities are updated using the same procedure as the incremental approach. 

The problem is then solved again using this data. This process is repeated until the 

solution converges to a solution. The number of iterations required for convergence is 

one of the results presented in the discussion section of the paper. 

Overall, there are two aims to the non-linear analysis that is performed by the proposed 

model.   The first aim is to create a stress-strain curve for any CNT-reinforced polymer 
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composite. The second aim is to discover whether or not the non-linear thermal 

properties of carbon nanotubes need to be included in thermal models of CNT/polymer 

composites. The results of incremental and iterative non-linear approaches are compared 

for this aim to see if one is superior to the other. However, whatever the results of the 

model may be, the success of these aims is ultimately determined by whether or not the 

model accurately represents available experimental results. Due to this fact, the present 

model is compared to several experiments by incorporating the parameters reported in 

those studies into the details of the model. 

3.3 Details of the Model 

With the general procedure detailed above, the two significant attributes of the proposed 

model should be evident. First and foremost, the model offers the option to to 

incorporate the non-linear properties of both the carbon nanotubes and the polymer 

matrix into both thermal and elasticity finite element analysis. Though only the 

polymer's elastic non-linearity and the nanotubes' thermal non-linearity are incorporated 

into the present elasticity and thermal analyses, respectively, it would take only minimal 

modification to incorporate both the non-linear elastic properties of the nanotubes and the 

thermal properties of the matrix should the specific physical situation require it. For 

instance, if a different polymer or other material were used in which non-linearity was 

initiated at a higher strain level, this would make the non-linear elastic properties of the 

nanotubes relevant, and the same procedure utilized for the present thermal analysis 

could quickly be used for the new elasticity problem. The same applies for a new 

thermal situation.    The second significant attribute of the proposed model is its inherent 
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versatility. If it is desired to model a composite fabricated with short-straight nanotubes, 

such as the ones developed by Li et al. [65] or Jia et al. [66], all that is needed is a change 

in the parameters of the length distribution described in Chapter 2, Equation (1). This 

will in turn make the waviness insignificant and short, straight nanotubes will be 

generated. If it is desired to model a composite with aligned nanotubes, all that is needed 

is a minor change in the geometry generation section of the model in which the first 

nanotube segment is always generated in the same direction. Finally, the model is 

flexible to almost any physical difference in properties among the materials used. The 

stress-strain curve used to update the elastic modulus of the matrix material is a user- 

defined parameter and can be readily changed depending upon the material used. If a 

new or different curve for the thermal conductivity variation of SWCNTs with 

temperature is specified, the equation used to update the thermal conductivity of the 

nanotubes readily altered. 

With these capabilities in mind, the elastic results of the model are compared to two 

different experimentally determined stress-strain curves. The first experiment is the 

tensile test performed by Sun et al. [46] on an epoxy composite reinforced in several 

different ways. The epoxy used was the EPIK-OTE• 862 resin cured with the 

EPIKURE• W curing agent. The stress-strain curves for the neat epoxy, epoxy with 

pristine nanotubes, and epoxy with functionalized nanotubes are reported and shown in 

Figure 11. 
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Figure 11. Tensile stress versus strain curves for the various composites reported by Sun et al. are 
presented [45]. The bottom, black line is used in the current model to update the elastic modulus of 
the epoxy matrix. 

The bottom, black curve for the neat epoxy shown in Figure 11 is used as the reference 

curve by which the modulus of elasticity is updated in the incremental elastic analysis of 

the current model. One of the fundamental assumptions of the Embedded Fiber Method 

is that the reinforcing fibers are perfectly bonded to composite matrix, as explained in 

Chapter Two. Due to this assumption, the results of the model will be compared to the 

top, blue stress-strain curve for the epoxy reinforced with 1 wt% functionalized 

nano tubes. 

Using a coordinate finding program developed at Rice University [42], the data points of 

the neat epoxy curve in Figure 11 were extracted from the reported figure. Using those 

data points and Matlab's built-in polynomial fitting routine, "polyfit", the cubic stress- 

strain polynomial is given by the equation 
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a = SSllE^s* - 1.573£10e2 + 2.864F9£, (30) 

with an R   value of 0.999.   Taking the derivative of this function, the instantaneous 

tangent modulus of the epoxy matrix is given by the equation 

da 
= E^ = •• -1.193E12«2 - 3.148E10s - 2.864E5. (31) •"tan 

The elasticity problem results of the proposed model are also compared to the work of 

Zhu et al. [22]. In their experiment, they used a similar epoxy and curing agent to Sun et 

al. [46] and they also used 1 wt% SWCNT loading. However, they report a different 

stress-strain relationship for the neat epoxy, allowing the simulation to be continued out 

to 5% strain. This curve is shown in Figure 12. 
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Figure 12. Tensile stress versus strain curves for the composites reported by Zhu et al. are presented 
[22]. The middle, neat epoxy line is used in the current model to update the elastic modulus of the 
epoxy matrix. 



44 

Using the epoxy curve that Zhu et al. report, the coordinate finding program of Esteva 

[42] was again employed and the data points for that curve were extracted. Again using 

Matlab's "polyfit" routine, the stress-strain polynomial fit to the data was found to be 

given by the equation 

a = -1.1084E11*3 - 4.0E8£2 + 1.93E9s. (32) 

This stress-strain relationship yielded a tangent modulus equation given by 

Y_ = Eian = -3.325En^2 - 8.0ES£ + 1.93E5. (33) 

It should be noted here that in order to calculate the tangent moduli in Equations (31) and 

(33), a single value of strain is needed. The calculation of a single stress was explained 

in the above section utilizing the von Mises criterion, but no mention was made of 

calculating a single strain. There are a few references to a von Mises strain, but this 

quantity is almost never used and several different reported equations for the von Mises 

strain were found. Taking this into account, the most direct solution to the problem was 

to calculate the von Mises stress using Equation (28) and then to solve Equation (30) for 

the strain. In this manner, one could use the von Mises stress to calculate a single strain 

value. To solve Equation (30) for the strain, a simple Newton-Rhapson root-finding 

algorithm was developed to find the strain for any given von Mises stress. This value is 

then used in Equation (31) to find the tangent modulus. 

It is also worth mentioning here that an additional limitation was placed upon this routine 

to ensure success. As noted in the composite materials literature, it is possible and 

probable that local stress and strain concentrations will occur throughout the RVE due to 

the local reinforcement provided by the nanotubes [19,67]. In reality, when the strain 

becomes too high, the reinforcing agent will tear from the reinforcing matrix and 
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reinforcement will drastically decrease. This effect can be seen visually in the 

experimental work of Sun et al. [46], Zhu et al. [22], and Gojny et al. [54], but is most 

readily observed in the work of Li and Chou [19] and shown in Figure 13. 

Figure 13. A close view of the stress-concentrations at nanotube tips due tensile strain is presented. 
Li and Chou developed this picture from their damage sensing model [19]. 

Since the proposed model relies upon the stress-strain curve reported by experimentalists 

to determine the modulus of elasticity, values of strain beyond the upper limit of the 

reported stress strain curve present a problem. The quadratic polynomial of Equation (31) 

used to calculate the tangent modulus drops drastically at high strain values, even below 

zero at especially high strains. Since a negative elastic modulus has no physical meaning 

in the context of the proposed model, this problem was avoided by setting a lower limit 

on the modulus of elasticity. A minimum modulus of 10 MPa, -100 times smaller than 

the epoxy under zero strain, was chosen to capture the "failure" of the reinforcement 

without allowing catastrophic failure ofthat element and the model as a whole. 

Furthermore, the present model also accounts for the hollow structure of carbon 

nanotubes.    As explained in the description of the Embedded Fiber Method, the 
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properties of the reinforcing fiber are directly combined with those of the matrix material. 

Implicit in this method is the assumption that the entire volume of the reinforcing fiber 

contributes to the reinforcement. In other words, the reinforcing fiber is assumed to have 

a solid structure. First discovered by Iijima in 1994, carbon nanotubes are a novel form 

of carbon and are in fact hollow tubes [68]. The hollow, tubular structure is clearly 

shown in the work of Pipes et al. [55] and is shown in Figure 14. 

Side view 

Front view 

Figure 14. A diagram of a single SWCNT structure illustrates the hollow, tubular nature of CNTs 
[55]. 

The assumption, then, of solid reinforcing fibers made by the EFM is clearly not accurate 

on the nanoscale. This assumption would overestimate the reinforcing ability of the 

nanotubes, if left unconnected, since the stiffness is calculated using the cross-sectional 

area of the fiber as shown in Equation (21). Several authors have reported various 

methods for making this correction. Seidel and Lagoudas [41] developed a 

micromechanics model of CNT-composites in which they used a composite cylinders 

approach to calculate effective properties of nanotubes when used as reinforcing fibers. 
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Using an initial elastic modulus of 1.1 TPa as supported by the literature cited in the 

introduction, they calculated an effective axial elastic modulus of 704 GPa by comparing 

the strain energies of sold and hollow cylinder models of the nanotubes. Odegard et al. 

[40] argue that a standard micromechanics approach is not accurate due to the fact that 

the lattice structures of the nanotube and polymer chains cannot be considered continuous 

at the nanoscale. They instead propose modeling the nanotube/polymer interface as an 

effective fiber by using an equivalent-continuum modeling method. They report an 

effective axial elastic modulus of 450.4 GPa. Considering this approach along with the 

small degradation of properties caused by functionalization [23], the fibers were assumed 

to have elastic moduli of 400 GPa in the current model. 

In addition to the preceding data, a standard Poisson's ratio of u = 03 was assumed for 

the epoxy matrix. Nanotube upper and lower length limits of 20 ram and 800 ram,, 

respectively, were chosen for the angle of deviation calculation in Equation (6). This 

assumption is based upon the reported length distributions of Wang et al. [29] and Ziegler 

et al. [30]. 
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Chapter 4 

Numerical Results 

Having discussed the problem specific details and assumptions of the proposed approach, 

the elasticity and thermal results are next presented. First, the deformation behavior of 

the composite in tension is shown for two different boundary conditions. A comparison 

of the elastic results to the experiments detailed is then attempted. Finally, a discussion 

of the thermal results compared to other models and experiments is undertaken. 

4.1 Deformation Behavior 

The first result derived by the current model is a qualitative description of the 

deformation behavior of the composite structure as a whole for a given applied 

displacement in the positive y direction. By visualizing the displacements of the various 

elements throughout the RVE, it is possible to glean information about the distortion of 

the structure and the localized reinforcement effects of the carbon nanotubes. To 

accomplish this, the characteristics of the epoxy used by Sun et al. [46] and described in 

Chapter 3 were used. As also indicated above, this is a parameter that can be easily 

altered based on the particular composite matrix of interest. A reinforcing component of 

1 wt% functionalized SWCNTs (F-SWCNTS) was randomly generated throughout the 
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RVE. To conduct the deformation analysis, the composite generated by the model was 

analyzed under two different loading conditions. In both tests, the upper boundary of the 

RVE was displaced 0.035 urn, equivalent of a total effective strain of 3.5% on the RVE 

in the positive j-direction. 

In the first test, the lower boundary of the RVE was held fixed in the ^-direction only. 

This test condition was chosen because it eliminates any reactions at the fixed nodes in 

the x-direction. By doing so, the reactions at the fixed nodes can then be used to recover 

the effective stresses that will be used for the stress-strain curve. A diagram of the 

boundary conditions for the first test condition is shown in Figure 15. 

/\   ^    /%..<%.    /\    /%. 

A   O   O O   O  O 
Figure 15. A diagram of the boundary conditions for the first test condition is presented. The bottom 
left corner is pinned and the bottom boundary is on rollers. 

Using these boundary conditions, the final displacements of all the elements in the finite 

element mesh were examined.  The number of elements in the mesh is referred to as the 

"mesh refinement." The mesh refinement necessary for experimentally accurate results is 

discussed in the next section. A non-linear analysis was performed for one, ten, and one 

hundred incremental displacement steps.   The different increment sizes were examined 

for a variety of different mesh refinements.  As already mentioned in the description of 



50 

the Embedded Fiber Method, one of its primary advantages is the capacity to derive 

accurate results with a simple square mesh. Because the mesh is square, its refinement, 

as reported in this thesis, will be described using the term "divisions". A division refers 

to the square root of the number of elements in the mesh. For example a mesh with one 

division has one element, two divisions yield four elements, four divisions yield sixteen 

elements, etc. This concept is illustrated in Figure 16. 

M 

06867 02 04 06 OS 1 
.10" 

Figure 16. A visualization of the mesh refinement for one, two, three, and five divisions, respectively 
is shown. 

The final displacements of the mesh can be visualized in two different ways. The first is 

to simply redraw the final mesh superimposed upon the initial mesh. This kind of 

visualization allows a qualitative view of the shape change of the RVE.    To readily 
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observe this behavior, the incremental solution technique was applied with 100 equal 

steps to an RVE with 10 divisions and 1 wt% volume fraction of SWCNTs. The 

effective strain of the composite was taken to 3.5% strain. The final and initial meshes 

are both shown in Figure 17. 
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Figure 17. The mesh deformation visualization for a single RVE, with 10 divisions and 1 wt% 
SWCNTS, stretched to 3.5% strain is presented. The change in shape of the RVE can be easily seen 
and by examining the shape change of each element, the reinforcing effect of fibers can be observed. 
The displacements of the final mesh are multiplied by a factor of three to make visualizing easier. 

The second option of visualizing the displacements of the mesh involves viewing a 

contour plot of displacements in the positive y direction. This technique may be more 

visually suggestive about nanotube reinforcement as the locations of the nanotubes can be 

conveniently shown along with the contour plot. A contour plot of the same RVE as 

depicted in Figure 17 is now shown in Figure 18. 
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x 10 Contour Plot of Y-Displacements for Composite at 3.5% Strain 
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Figure 18. A contour plot of the y displacements of the element nodes is presented with the nanotube 
locations superimposed. The reinforcing properties of the nanotubes can be observed by noting the 
regions where colors stay the same. Some samples of these regions are highlighted with white boxes. 

Figure 18 clearly reveals the reinforcing capabilities of the nanotubes. The most notable 

features to observe in the contour plot are the areas in which color remains the same or 

nearly the same in the y directions. These regions indicate quite small displacements and 

are clearly located where nanotubes are aligned in the tensile stretch direction. A few of 

these regions are outlined in white for easy identification. 

Each of these techniques to visualize displacement is useful alone, but when they are 

viewed together, a comparison can be readily made, enhancing the descriptive ability of 
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both plots. By viewing the two plots side by side, the reinforcing effects of the nanotubes 

can be seen not only in the tensile direction, but also in the x direction. To this effect, the 

mesh deformation and displacement contours of the same RVE are shown in Figure 19. 

However, in this figure the plots are shown for a single step at a high strain value, 

approximately 2.5% strain. By examining the deformation behavior at high strains, the 

reinforcing capabilities are more readily observable since the surrounding matrix material 

is losing its capacity to elastically resist the tensile stretching. 
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Figure 19. The mesh deformation and contour plot of y displacements for the same RVE are 
presented at 2.5% strain. By visualizing the displacements of a single incremental step the 
reinforcing capabilities of the nanotubes are very clear. The displacements of the final mesh on the 
left are multiplied by 300 to make visualizing easier. 

Furthermore, it is insightful to compare the contour plots of the RVE before and after the 

onset of plastic deformation. By making this comparison, it becomes evident that at low 

strains, the nanotubes have a limited reinforcing role, but at high strains their role 

becomes very important and pronounced.   The contour plots of the displacements after 

the first step and after the 75l step are shown in Figure 20. 
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Figure 20. The contour plots of the y displacements after the first and 75th incremental steps are 
presented. By examining the deformation before and after the onset of plastic deformation, the role 
of the nanotubes in combating plastic deformation is evident. 

Having presented the deformation results from the first loading condition as depicted in 

Figure 15, the results of the second test condition are now shown. The second condition 

is the traditional tensile test in which the bottom edge of the sample is fixed in both the x 

and the y directions and the top edge is fixed in the x direction while displaced in the y 

direction. These boundary conditions are shown in Figure 21. 

HJLQJLO 

Figure 21. A diagram of the boundary conditions for the second test condition illustrates the 
traditional tensile test. The bottom edge is completely fixed and the top edge is fixed in the x- 
direction. 



55 

In the same manner as the first test condition, the change in the RVE shape can be 

visualized by the change in the mesh shape. The final and initial shapes are shown for an 

RVE with no nanotubes and an RVE with 1 wt% SWCNTs for comparison in Figure 22. 

In these results, 100 incremental steps were again used but 20 divisions were used this 

time as compared to the 10 divisions used in the results above. This difference is made 

only to show what 20 divisions look like when visualized. 
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Figure 22. The mesh deformation for the second testing condition is presented, (a) Mesh deformation 
for an RVE without nanotubes. Symmetric deformation is observed (b) Mesh deformation for an 
RVE with 1 wt. % SWCNTs is shown. The final mesh displacements are multiplied by a factor of 3 
to make visualizing easier. 
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Similarly, the contour plots with and without nanotubes are shown in Figure 23. 
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Figure 23. The displacement contours for the second test condition are presented, (a) The 
displacement contour of RVE without reinforcement is shown, (b) The displacement contour of an 
RVE with 1 wt % nanotubes is shown for comparison. 

An enlargement of the contour plot in Figure 23 (b) is shown in Figure 24. Here, the 

areas outlined in white highlight the reinforcing capability of the nanotubes. It is also 

worth recognizing the path in which major changes in color occur. These paths, indicated 

by white lines, clearly follow regions that are void of nanotubes indicating a lack of 

mechanical reinforcement. 
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Figure 24. A displacement contour of the second test condition with special features indicated is 
presented. The areas boxed in white indicate sample regions of particularly strong reinforcement in 
the tensile direction as shown by the continuity of color. The white paths across the RVE indicate 
probable locations of fracture in the RVE due to lack of reinforcement. 

After using both testing conditions to examine deformation behavior, the first condition 

was chosen to calculate the stress-strain curve for the composite. As detailed above, by 

allowing all the nodes to move freely in the x direction as the first condition does, there 

are no reaction forces in the x direction. Hence, all of the force caused by displacing the 

upper boundary nodes will be present in the y component of the reaction forces at the 

bottom nodes. This fact allows a true stress-strain relationship for the lone composite 

material to be developed. 
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4.2 Stress-Strain Results 

With a qualitative view of the deformation behavior in hand, the next step was to 

determine the mesh refinement and number of incremental steps needed for an accurate 

model. To accomplish this, a mesh refinement analysis was performed and the results 

were compared to experimental data. The stress-strain curve used for comparison in the 

mesh refinement analysis is the functionalized-SWCNT curve (top, blue curve) of Sun et 

al. [46] shown in Figure 11. 

Due to the random nature of the nanotube geometry generation, the finite element results 

of a single RVE would not be a statistically accurate representation of the stress-strain 

relationship of the general composite. To report a statistically accurate result, a Monte 

Carlo statistical analysis must be adopted for the data. Monte Carlo statistical analysis is 

a process in which meaningful information about a random event, such as the stress-strain 

curve of any single RVE in the current model, is gained by statistically analyzing a large 

number of those events. In the case of the current model, the only analysis that is needed 

is to take the average stress values of many different RVEs at the same strain values to 

create a statistically accurate stress-strain curve. To ensure that an adequate number of 

random RVE's were considered, the non-linear simulation is performed on 500 different 

RVE microstructures. The average stress values for each step are then used to generate 

the stress-strain curve for the composite material. Esteva [42] validated the choice of five 

hundred different microstructures by performing a Monte Carlo convergence analysis on 

his linear model. Since the proposed non-linear model is a combination of many linear 

solutions, this analysis validates five hundred samples as a sufficient sample size for the 

current model as well. 
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Before reporting the stress-strain curve for a material, it was first necessary to determine 

the number of incremental steps and the number of divisions required for the non-linear 

solution to converge to an accurate value. Using the same volume fraction, nanotube and 

epoxy densities, and Poisson's ratio as Sun et al. [46], the Monte Carlo analysis described 

above was performed on the results. To determine the number of incremental steps 

needed, the results of the incremental solution for a single division of the RVE were 

examined. This convergence analysis, along with the F-SWCNT curve of Sun et al. [46] 

for reference, is summarized in Figure 25. 
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Figure 25. (a) The non-linear incremental convergence analysis for the model is shown for a single 
division of the RVE. (b) A closer view of the model results at high strains. A step refinement of 100 
incremental steps is identified as sufficient for convergence. 
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By examining these results, 100 incremental steps were identified as necessary to capture 

the non-linearity of the epoxy. The Monte Carlo analysis was then performed on the 

results of 500 different RVE's for 1, 10, 20, 40, 60, and 80 divisions in order to determine 

the mesh refinement needed for an accurate result. This kind of mesh convergence 

analysis is herein termed Monte Carlo Mesh Convergence Analysis (MCMMA). The 

MCMMA for 100 incremental steps is presented in Figure 26 along with the F-SWCNT 

curve reported by Sun et al. [46]. 
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Figure 26. (a) The mesh convergence analysis for the model with one hundred incremental steps is 
shown for 1, 10, 20, 40, 60, and 80 divisions of the RVE. The "diamond" line identifies the 
experimental results of Sun et al. [45]. (b) A closer view of the model results at high strains. A mesh 
refinement of 60 divisions is identified as sufficient for accurate stress-strain results. 
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The mesh convergence analysis shown above indicates that an accurate result can be 

obtained with 60 divisions of the finite element mesh. Though a finer mesh will improve 

the accuracy, as it can be observed by the line for 80 divisions, the computational cost 

increases as n2, where n is the number of divisions. This fact creates the need to identify 

the minimum number of divisions necessary for accurate results, and is shown to be 60 

divisions in Figure 26. 

To confirm the choice of 100 incremental steps and make sure that accurate results 

cannot be obtained by simply increasing the number of divisions, the same MCMMA as 

shown in Figure 26 was conducted for both one and ten incremental steps. These results 

are shown in Figure 27. It is readily seen that neither one nor ten steps yield accurate 

results for any number of divisions. 
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Figure 27. (a) The mesh convergence analysis for the model with one incremental step is shown for 1, 
10, 20, 40, 60, and 80 divisions of the RVE. The "diamond" line identifies the experimental results of 
Sun et al. [45]. (b) The same analysis is shown for the model with 10 incremental steps. 
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With the values of 60 divisions and 100 incremental steps selected as the model 

parameters needed for qualitatively accurate results, the final step was to compare the 

results of the model to different experimental results in order to validate the accuracy and 

effectiveness of the model. For these data sets, statistical analysis was performed to 

determine the standard deviation of the Monte Carlo data. The standard deviation of a 

given data set is determined by the equation [69] 

° = J&?=i(.*t-*r- (34) 

In this equation, N is the number of data points, Xj is an individual data point, and x is the 

mean value ofthat data set. After calculating the standard deviation of the stresses at the 

different strain levels, the stress-strain curve for 60 divisions, 100 incremental steps was 

compared to two different experimental data sets 

The stress-strain results of the model were first compared to the experimental results of 

Sun et al. [46]. The tangent modulus of the epoxy matrix was updated using Equation 

(30) and the tensile test was simulated up to 3.5% strain. The comparison is shown in 

Figure 28. 
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Figure 28. (a) The model results for 60 divisions, 100 steps are compared to the results of Sun et al. 
[45]. (b) A close view of the stress-strain curve high strain values is shown. 
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As can be observed Figure 28, the experimental curve is close, but does not fall within 

the standard deviation error bars of the model at all levels of strain. The maximum 

disagreement between the model and the experiment is less than 4%. Because the 

experimental curve is derived from a single realization of an experiment, this lack of 

agreement is not an indication of a poor model. By looking at the curves of the minimum 

and maximum RVE's shown in Figure 29, a large span of values for the stress at high 

strain levels can be observed. The experimental curve of Sun et al. falls within this 

region. This fact indicates that the model is in fact a good one and the lower curve 

reported by Sun et al. could be accounted for by any number of factors. 

60 Div, 100 Steps, Min and Max RVE's 

•Sunetal FSWCNT 

•Max 

Min 

0.01 0.02 

Strain 

0.03 0.04 

Figure 29. The maximum and minimum RVE's out of the 500 RVE's sampled in the MCMCA are 
compared to the experimental results of Sun et al. [45] to highlight the span of possible outcomes for 
random nanotube geometries. 

In addition to the results of Sun et al., the model is also compared to the experimental 

data reported by Zhu et al. [22]. The equation used to update the elastic modulus for this 
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case is detailed in Equation (33). In this case, the model is used for up to 5% strain and 

once again, 60 divisions and 100 incremental steps were used. The comparison of the 

model to Zhu et al.'s data is shown in Figure 30. 

Comparison to Zhu et al. 
120 -, 
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- Poly. (Neat Epoxy) 

Figure 30. The model results for 60 divisions, 100 steps are compared to the results of Zhu et al. [22]. 
The center, blue F-SWCNT line represents the experimental data. 

Akin to the first experiment, the model's calculated stress-strain curve does not fall 

within the standard deviation error bars at all strain values. By simply increasing the 

mesh refinement of the model, a closer curve could easily be generated.  However, the 
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goal of the model proposed herein is to merely yield accurate results, and this is 

accomplished with 60 divisions as demonstrated above. The largest disagreement 

between the model and the experimental data is less than 5%. Because of the close 

agreement with two different experiments, the elastic model is deemed reliable. Utilizing 

a non-linear finite element procedure with only 60 divisions in a simple square mesh, an 

accurate stress-strain curve can be generated for an arbitrary nanotube-reinforced 

polymer composite if the polymer matrix's stress-strain curve is known. 

4.3 Thermal Results 

The final result of the approach presented in this thesis is calculation of the effective a 

non-linear thermal conductivity of the composite. Both the incremental and iterative 

non-linear approaches were considered in the thermal model to determine the superiority 

of one over the other in terms of computational time and numerical accuracy. For the 

thermal case, only the non-linear thermal conductivity of SWCNTs was considered 

because its scale is at least four orders of magnitude greater than the thermal conductivity 

of the polymer matrix, at any temperature. The thermal conductivity of the polymer used 

for the present model is assumed to be constant because of the experimental evidence of 

both Biercuk et al. [50] and Xu et al. [47]. First, the same method used to visualize the 

displacement contours in the mechanical analysis is applied to the thermal problem to 

visualize the temperature contour of any RVE. Mesh refinement analysis was then 

performed on the results of both the incremental and iterative approaches and the 

effective thermal conductivity for 130 divisions was compared to the values reported in 

the current literature.  For the mesh refinement analysis, a polymer thermal conductivity 
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w 
of 0.188 —^— was used.   This value is in close agreement with the values reported by 

Wang et al. [48] for their epoxy resin, and Cai and Song [49] for their polyurethane 

matrix. 

Boundary Conditions and Temperature Contours 

To calculate the effective thermal conductivity of the composite, the non-linear thermal 

properties of SWCNTs were taken from the work of Grujicic et al. [15]. A graph of the 

non-linear dependence of thermal conductivity on temperature is presented in Figure 9. 

In this model, the bottom edge of the RVE is held at 0° C , the top edge is held at 100° C, 

and both side edges are insulated. As usual, these values could be altered depending on 

the experimentalist's interests. The thermal conductivity of the composite was calculated 

using the heat flux at the bottom nodes of the RVE. A diagram of these boundary 

conditions is shown in Figure 31. 
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Figure 31. A diagram of the boundary conditions for the thermal analysis is shown. The top edge is 
held at 100° C and the bottom is held at 0°C while the sides are insulated. 

To compare to the elasticity analysis, a given displacement was applied to the top of the 

RVE and the reaction forces at the bottom fixed nodes were recovered and used to 

calculate the stress in the RVE. For the thermal analysis, a temperature difference was 

applied between the top and bottom of the RVE and the heat fluxes at the bottom nodes 

were recovered. The thermal conductivity of the RVE was then calculated using the 

equation 

(35) eff " AtAT' 

where, E# is the sum of the heat fluxes across the bottom nodes, A is the area of the 

RVE, t is the thickness of the RVE, and &T is the temperature difference between the 

bottom and top of the RVE. 
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Before calculating the thermal conductivity, the first result of the thermal analysis was a 

qualitative view of the thermal conductivity enhancement provided by the addition of 

SWCNTs to the polymer. With a similar motivation to the deformation behavior section 

of the mechanical analysis, visualizing a temperature contour of the RVE allows the user 

to gain a good understanding of how effectively nanotubes conduct heat through the 

ay 
composite.   Using the polymer thermal conductivity of 0.188 —- and the nanotube 

thermal conductivity curve of Grujicic et al. [15], the non-linear thermal model was run 

using 10 iterative steps and 40 divisions. As will be seen in the following section, the 

number of steps is more than enough to capture the non-linearity of the nanotubes and the 

number of divisions is sufficient to simply see the temperature contours accurately. The 

temperature contour for a random RVE with 1 wt% SWCNTs is shown in Figure 32. 
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Figure 32. A contour plot of temperatures from the non-linear thermal model is presented. 

Similar to the displacement contours for the elastic model, the temperature contour 

vividly illustrates the reinforcing effect of the nanotubes. The areas of the contour plot 

where color remains constant indicate regions of high thermal conductivity. These areas 

clearly follow the nanotubes in the RVE and indicate their role in enhancing the thermal 

conductivity of the composite. 
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Mesh Convergence Analysis 

After achieving a qualitative confirmation that the model was working correctly through 

the temperature contours, the next step was to determine the number of steps necessary 

for convergence in the non-linear solution techniques. For both the iterative and 

incremental approaches, the thermal conductivities of the nanotubes were updated after 

each step using the temperatures of the nanotubes in conjunction with Equation (29). The 

final thermal conductivity of the composite is calculated using the heat flux at the last 

step in conjunction with Equation (35). Monte Carlo Mesh Convergence Analysis 

(MCMCA) was used to obtain statistically accurate values of thermal conductivity and to 

determine the finite element mesh size necessary for the thermal conductivity to converge 

to an accurate value. 500 RVE's were considered again for the same reasons outlined in 

the stress-strain results section. 

The first approach taken to consider the non-linear thermal conductivity of the nanotubes 

was the incremental approach described in Chapter 3. Temperature increments between 

0° C and 100° C were applied to the top boundary of the RVE. The MCMCA for the 

incremental approach is shown in Figure 33. 
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Figure 33. (a) The MCMCA for the thermal conductivity of 500 RVEs is presented for the 
incremental approach. A mesh refinement of 130 divisions is needed for accurate results, (b) By 
zooming in, it is also evident that 10 incremental steps are sufficient to capture the non-linearity of 
the thermal conductivity of the nanotubes. 
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The MCMCA shown in Figure 33 highlights the three important results of the thermal 

model.   First, an effective thermal conductivity of ~ 0.80 was calculated for the 

composite with 1 wt. % SWCNT loading. This result shows that the model is indeed 

yielding accurate thermal conductivities. Second, a mesh refinement of 130 divisions 

was identified as necessary for the FEA to converge to a single value. Finally, it was 

determined that 10 incremental steps are sufficient to capture the non-linear thermal 

conductivity of the SWCNTs. 

The second approach taken to capture the non-linearity of the SWCNTs was an iterative 

approach. In this approach, a single temperature gradient of 100° C was applied to the 

RVE. Using the resultant temperatures throughout the RVE, the thermal conductivities 

of the nanotubes were updated and the gradient is applied again. MCMCA was used to 

investigate the number of steps needed to capture the non-linearity of the nanotubes as 

well as the mesh refinement needed for a convergent effective thermal conductivity of the 

composite. This analysis is summarized in Figure 34. 
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Figure 34. (a) The MCMCA for the thermal conductivity of 500 RVEs is presented for the iterative 
approach. A mesh refinement of 130 divisions is needed for accurate results, (b) By zooming in, it is 
also evident that only two iterative steps are needed to capture the non-linearity of the thermal 
conductivity of the nanotubes. 
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The MCMCA shown in Figure 34 highlights the three important results of the thermal 

model as well.  First, an effective thermal conductivity of- 0.80 was calculated for 
J sai-ST 

the composite with 1 wt. % SWCNT loading. Second, a mesh refinement of 130 

divisions was identified as necessary for the FEA to converge to a single value. Finally, 

it was determined that 2 iterative steps are sufficient to capture the non-linear thermal 

conductivity of the SWCNTs. 

Comparing these two different approaches, it is apparent that for a mesh refinement of 

130 divisions, both the incremental and iterative approaches yield almost identical 

results. However, it takes the incremental approach 10 steps to accomplish the same non- 

linear analysis that takes only two steps in the iterative approach. For this reason, the 

iterative approach is chosen as the preferred non-linear approach to take for the present 

model. 

Comparison to Experiment 

The final and most important step in the thermal analysis of composites using the current 

model is the comparison of the results to experimental data. After a thorough review of 

the recent literature on the subject, the data of Wang et al. [48], Moisala et al. [16], 

Biercuk et al. [50], Hong and Tai [51], Cai and Song [49], and Xu et al. [47] was chosen 

to provide a broad variety of polymers and volume fractions for comparison. Agreement 

with experimental results both validated the thermal model and confirmed its utility. 

Before these comparisons are made, it should be first noted that it was often difficult to 

compare experiments to the present model exactly for several reasons. First, 

experimental reports do not always report the complete properties of the composite 

matrix that they used.   The most common property left out is the density of the matrix. 
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This prevents a truly accurate conversion of weight fraction to volume fraction. An 

approximate density of 1.2 —r was used in these cases to convert weight fractions to 

volume fractions using Equation (7). Second, different kinds of nanotubes and 

procedures are often used. For example, Xu et al. [47] reported results for non-purified 

SWCNTs with no functionalization while Wang et al. [48] used shortened nanotubes of 

50 iwi- or less that are well dispersed throughout the matrix. Moisala et al. [16] and Cai 

and Song [49] reported results for MWCNT's. Hong and Tai [51] used thin films of 

SWCNT networks, called Buckypapers, in reporting their results. In short, there are 

various experimental approaches taken to report thermal conductivity of these 

composites, and while the model proposed herein can account for a wide variety of 

physical parameters of the matrix and nanotubes themselves, it cannot account for all of 

the intricacies mentioned above. However, as the MCMCA results above showed, one 

can expect the model to still yield reliable values for the thermal conductivities of 

composites. 

First, the model was compared to six different experiments. For each comparison, the 

model was executed using the same volume fraction and matrix thermal conductivity, 

JSJw, as reported in the papers from which the data was taken. These comparisons are 

shown in Figure 35. 
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I Experimental 
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Figure  35. A comparison  of the thermal conductivities  calculated  by the  model to various 
experiments is shown. 

As is obvious from Figure 33, the proposed model results are close to relevant 

experimental results for small weight fractions of 1 wt% or less. However, it is also 

evident that the model overestimates the thermal conductivity of the composite in every 

single case. Both of these observations can be explained by the imperfect assumption of 

perfect transfer of properties between the nanotubes and the polymer matrix inherent in 

the Embedded Fiber Method. 

The primary reason for the inaccuracy of this assumption relates to the high thermal 

resistance between the nanotube-matrix and nanotube-nanotube interfaces. Huxtable et 

al. [70] found that the interface conductance, G, for CNT's in a polymer matrix is 

approximately  12 - 
m?& 

For comparison,  Wilson  et  al.   [71]   found an  interface 
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conductance of 13Ö1 —5— for platinum nanoparticles in water.   This exceptionally small 

interface conductance will result in a significant reduction in the thermal conductivity of 

the composite. Closely related, Xue [72] performed a study examining the effects of 

interfacial resistance, or Kapitza resistance, between the nanotubes and the surrounding 

matrix on the effective conductivity of nanotube-reinforced composites. His results 

indicate that this resistance can effectively reduce the thermal conductivity of the 

nanotubes by several orders of magnitude. While the small thermal conductance and 

high thermal resistance accounts for the small overestimation of thermal conductivity at 

low volume fractions, it does not adequately explain the discrepancy observed at higher 

volume fractions. 

The significant disagreement between the model and experiments for high volume 

fractions can be explained by the large number of junctions among carbon nanotubes that 

exist as the nanotube volume fraction increases. While this percolating network is ideal 

for electrical conductivity, a large resistance to phonon movement from one nanotube to 

another exists for thermal loads [47]. This resistance actually dominates the small 

interfacial conductance and is the primary reason why dramatic increases in thermal 

conductivity are seen for small volume fractions compared to very small gains with the 

addition of more nanotubes. For example, Wang et al. [48] report a 40% increase in 

thermal conductivity of their composite with the addition of only 0.5 wt% SWCNTs. In 

contrast, Xu et al. [47] report only a 60% increase in thermal conductivity with 19% 

volume fraction of SWCNTs. 

With rather limited research reported in these two areas of thermal conductivity 

hindrance, it is impossible to incorporate these factors empirically into the model. 
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However, the phenomenological observation of the composite thermal conductivities 

reported in the literature has allowed the incorporation of these factors into the model by 

simply reducing the thermal conductivity of the SWCNTs by a factor of twenty. While 

still using the same non-linear thermal conductivity reported by Grujicic et al. [15], the 

result of Equation (29) is simply divided by twenty and then the rest of the model 

continues normally. Using this observation, the effective thermal conductivities shown in 

Figure 32 were recalculated and again compared to the same experiments. This 

comparison is shown in Figure 36 which reflects a much better agreement between the 

model results and the experimental data. 

Comparison of Thermal Results to 
Experiments 

Modified Model 
Results 

Experimental 
Results 

Model vs. Model vs. Model vs. Model vs. Model vs. Model vs. Model vs. 
Wanget   Moisala  Hongand Biercuk et Hongand   Caiand    Xuetal. 

al. etal. Tai al. Tai Song      (5 vf%) 
(.5wt%)   (.5wt%)    (lwt%)    (lwt%)    (2wt%)    (3wt%) 

Figure 36. A comparison of the modified model's thermal conductivity results to various experiments 
is presented. Much better agreement with experimental results is clearly evident. 

The comparison shown in Figure 34 clearly illustrates that the simple reduction of the 

thermal conductivity of the nanotubes by a factor of twenty creates much better 

agreement between the model and experiment for all volume fractions.    For every 
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comparison, except that to Xu et al., the thermal conductivity predicted by the model is 

within ~ 33% of the value reported by the corresponding experiment. While this value 

may seem large at first, considering the poorly understood and complex mechanisms 

described above that inhibit efficient heat conduction, this agreement is indeed quite 

reasonable. 

In conclusion, the thermal conductivity calculated using a two-step iterative finite 

element procedure using the Embedded Fiber Method produced results that provide a 

good approximation of the thermal properties of a SWCNT-reinforced polymer 

composite for volume fractions less than about three percent. Comparing model results 

to six different related experiments, and finding good agreement, demonstrates the 

versatility of the model for simulating a variety of different polymers over a large range 

of SWCNT volume fractions. However, the accuracy of the model could be improved 

with a better understanding of the mechanisms inhibiting efficient heat transfer between 

the polymer and the nanotubes, and between nanotube junctions. 
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Chapter 5 

Concluding Remarks 

In the past decade, a significant amount of experimental and theoretical research has been 

conducted to develop and characterize a large number of novel nanocomposites. The 

experimental research has been significantly limited by the cost, complexity, and time 

required in developing and testing new nanocomposites. To date, no theoretical model 

has been able to incorporate the non-linear mechanical and thermal properties of these 

new composites for a sample of significant reinforcing volume fraction. 

In this thesis, a non-linear finite element model has been presented to address this need. 

For mechanical properties, the model was utilized to visualize the deformation behavior 

and to calculate the stress-strain curve of a SWCNT-reinforced polymer composite under 

tensile strain. For thermal properties, the model presented was used to calculate the 

effective thermal conductivity of the composite by incorporating the non-linear thermal 

conductivity of the SWCNTs. 

The three major advantages of the proposed model have been exemplified in the results 

presented in this paper. First, the capacity to visualize the deformation of a SWCNT- 

reinforced polymer was demonstrated through plots of the original and deformed finite 

element meshes along with contour plots of the nodal displacements throughout the RVE. 
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By comparing these two visualizations, along with the positions of nanotubes in the RVE, 

significant information about the reinforcing effects of the nanotubes can be gleaned. In 

addition, the temperature contour plot presented in the thermal results allows the 

enhancement in thermal conductivity of the composite due to the nanotubes to be clearly 

observed. 

Second, the ability to generate an accurate stress-strain curve of the composite has been 

demonstrated. Using a mesh refinement of 60 divisions along with a 100 incremental 

steps, the non-linear elastic properties of the polymer matrix were accurately modeled. 

After comparing the model results to the work of Sun et al. [46] and Zhu et al. [22], the 

model has been found to be accurate within 5% for the entire stress-strain curve. 

Finally, the capacity to calculate the effective thermal conductivity of a SWCNT- 

reinforced polymer composite was shown. By incorporating the non-linear thermal 

properties of SWCNTs, the accuracy of the model is improved. Using a mesh refinement 

of 130 divisions along with 2 iterative steps, the thermal conductivities of seven different 

experimental scenarios have been calculated. After comparing the results of the model to 

the work of Wang et al. [48], Moisala et al. [16], Biercuk et al. [50], Hong and Tai [51], 

Cai and Song [49], and Xu et al. [47], it has been found that the model is accurate within 

33% for any volume fraction less that 3%. While this error may seem large, it is in fact 

quite reasonable when considering the poorly understand mechanisms inhibiting heat 

transfer between CNTs and between CNTs and the polymer. 

In summary, it has been found that a non-linear finite element model using the Embedded 

Fiber Method can accurately predict the mechanical and thermal properties of a large 

variety of different SWCNT-reinforced polymer composites.    This model has many 



86 

potential uses in composite materials engineering. It provides experimentalists with a 

tool to validate their results, as well as a means to accurately explore approximate 

properties of systems for future experimentation. The primary feature of this model is 

its flexibility for use in a variety of applications. The model proposed in this thesis 

provides a timely and accurate calculation of deformation, stress-strain relationships, and 

thermal conductivities for any number of new composite materials. 

Further work in the direction of this thesis may include the calculation of electrical 

properties for these SWCNT-reinforced polymer composites, modifications to allow the 

modeling of DWCNT and MWCNT-reinforced polymer composites, and the extension of 

the model to three spatial dimensions. 
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Appendix A 

Newton Rhapson Scheme to Find the Natural Coordinates of a Nanotube 

subroutine NatCoordFinder(exc,x,y,nc) 
! find natural coordinates from 
! element global coordinates (reverse mapping) 
implicit none 
real(8), intent(in) :: exc(8,l),x,y 
real(8),intent(out) :: nc(2,l) 
real(8) xl,x2,x3,x4,yl,y2,y3,y4 
real(8) al,a2,a3,a4,bl,b2,b3,b4 
real(8)J(2,2),Ji(2,2),f(2,l),nci(2,l),d,jj 

! extracting node coordinates 
xl=exc(l,l) 
yl=exc(2,l) 
x2=exc(3,l) 
y2=exc(4,l) 
x3=exc(5,l) 
y3=exc(6,l) 
x4=exc(7,l) 
y4=exc(8,l) 

al=0.25*(xl+x2+x3+x4) 
a2=0.25*(-xl-x2+x3+x4) 
a3=0.25*(-xl+x2+x3-x4) 
a4=0.25*(xl-x2+x3-x4) 

M=0.25*(yl+y2+y3+y4) 
b2=0.25*(-yl-y2+y3+y4) 
b3=0.25*(-yl+y2+y3-y4) 
b4=0.25*(yl-y2+y3-y4) 

nc=0.dO ! initial guess 
d=l.dO 

do while (d>0.0001d0) 
! Calculating Jacobian matrix 
J(l,l)=a3+a4*nc(2,l) 
J(l,2)=a2+a4*nc(l,l) 
J(2,l)=b3+b4*nc(2,l) 
J(2,2)=b2+b4*nc(l,l) 
! Calculating vector of equations 
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f(l,l)=al+a2*nc(2,l)+a3*nc(l,l)+a4*nc(l,l)*nc(2,l)-x 
f(2,l)=bl+b2*nc(2,l)+b3*nc(l,l)+b4*nc(l,l)*nc(2,l)-y 
! Calculating inverse of Jacobian matrix 
jj=J(l,l)*J(2,2)-J(l,2)*J(2,l) 
Ji(l,l)=J(2,2)/jj 
Ji(l,2)=-J(l,2)/jj 
Ji(2,l)=-J(2,l)/jj 
Ji(2,2)=J(l,l)/jj 
! Newton-Rhapson Approximation 
nci=nc-matmul(Ji,f) 
! Calculating the norm of difference 
d=sqrt((nci(l,l)-nc(l,l))**2+(nci(2,l)-nc(2,l))**2) 
nc=nci 

enddo 
end subroutine NatCoordFinder 
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